CONDUCTORS AND INSULATORS

ELECTRIC CHARGE AND FIELDS – CONDUCTORS AND INSULATORS, CHARGING BY INDUCTION AND BASIC PROPERTIES OF ELECTRIC CHARGE (NCERT 12TH PHYSICS PART 1)

CONDUCTORS AND INSULATORS

A metal rod held in hand and rubbed with wool will not show any sign of being charged. However, if a metal rod with a wooden or plastic handle is rubbed without touching its metal part, it shows signs of charging. Suppose we connect one end of a copper wire to a neutral pith ball and the other end to a negatively charged plastic rod. We will find that the pith ball acquires a negative charge. If a similar experiment is repeated with a nylon thread or a rubber band, no transfer of charge will take place from the plastic rod to the pith ball. Why does the transfer of charge not take place from the rod to the ball?

Some substances readily allow passage of electricity through them, others do not. Those which allow electricity to pass through them easily are called conductors. They have electric charges (electrons) that are comparatively free to move inside the material. Metals, human and animal bodies and earth are conductors. Most of the non-metals like glass, porcelain, plastic, nylon, wood offer high resistance to the passage of electricity through them. They are called insulators. Most substances fall into one of the two classes stated above.

When some charge is transferred to a conductor, it readily gets distributed over the entire surface of the conductor. In contrast, if some charge is put on an insulator, it stays at the same place. This property of the materials tells you why a nylon or plastic comb gets electrified on combing dry hair or on rubbing, but a metal article like spoon does not. The charges on metal leak through our body to the ground as both are conductors of electricity. When we bring a charged body in contact with the earth, all the excess charge on the body disappears by causing a momentary current to pass to the ground through the connecting conductor (such as our body). This process of sharing the charges with the earth is called grounding or earthing. Earthing provides a safety measure for electrical circuits and appliances. A thick metal plate is buried deep into the earth and thick wires are drawn from this plate; these are used in buildings for the purpose of earthing near the mains supply. The electric wiring in our houses has three wires: live, neutral and earth. The first two carry electric current from the power station and the third is earthed by connecting it to the buried metal plate. Metallic bodies of the electric appliances such as electric iron, refrigerator, TV are connected to the earth wire. When any fault occurs or live wire touches the metallic body, the charge flows to the earth without damaging the appliance and without causing any injury to the humans; this would have otherwise been unavoidable since the human body is a conductor of electricity.

CHARGING BY INDUCTION

When we touch a pith ball with an electrified plastic rod, some of the negative charges on the rod are transferred to the pith ball and it also gets charged. Thus the pith ball is charged by contact. It is then repelled by the plastic rod but is attracted by a glass rod which is oppositely charged. However, why a electrified rod attracts light objects, is a question we have still left unanswered. Let us try to understand what could be happening by performing the following experiment.

(i) Bring two metal spheres, A and B, supported on insulating stands,

 (ii) Bring a positively charged rod near one of the spheres, say A, taking care that it does not touch the sphere. The free electrons in the spheres are attracted towards the rod. This leaves an excess of positive charge on the rear surface of sphere B. Both kinds of charges are bound in the metal spheres and cannot escape. They, therefore, reside on the surfaces. The left surface of sphere A, has an excess of negative charge and the right surface of sphere B, has an excess of positive charge. However, not all of the electrons in the spheres have accumulated on the left surface of A. As the negative charge starts building up at the left surface of A, other electrons are repelled by these. In a short time, equilibrium is reached under the action of force of attraction of the rod and the force of repulsion due to the accumulated charges. Shows the equilibrium situation. The process is called induction of charge and happens almost instantly. The accumulated charges remain on the surface, as shown, till the glass rod is held near the sphere. If the rod is removed, the charges are not acted by any outside force and they redistribute to their original neutral state.

(iii) Separate the spheres by a small distance while the glass rod is still held near sphere A. The two spheres are found to be oppositely charged and attract each other.

(iv) Remove the rod. The charges on spheres rearrange themselves. Now, separate the spheres quite apart. The charges on them get uniformly distributed over them.

In this process, the metal spheres will each be equal and oppositely charged. This is charging by induction. The positively charged glass rod does not lose any of its charge, contrary to the process of charging by contact. When electrified rods are brought near light objects, a similar effect takes place. The rods induce opposite charges on the near surfaces of the objects and similar charges move to the farther side of the object.

The centres of the two types of charges are slightly separated. We know that opposite charges attract while similar charges repel. However, the magnitude of force depends on the distance between the charges and in this case the force of attraction overweighs the force of repulsion. As a result the particles like bits of paper or pith balls, being light, are pulled towards the rods.

BASIC PROPERTIES OF ELECTRIC CHARGE

We have seen that there are two types of charges, namely positive and negative and their effects tend to cancel each other. Here, we shall now describe some other properties of the electric charge. If the sizes of charged bodies are very small as compared to the distances between them, we treat them as point charges. All the charge content of the body is assumed to be concentrated at one point in space.

Additivity of charges

We have not as yet given a quantitative definition of a charge; we shall follow it up in the next section. We shall tentatively assume that this can be done and proceed. If a system contains two point charges q1 and q2, the total charge of the system is obtained simply by adding algebraically q1 and q2 , i.e., charges add up like real numbers or they are scalars like the mass of a body. If a system contains n charges q1, q2, q3, …, qn, then the total charge of the system is q1 + q2 + q3 + … + qn . Charge has magnitude but no direction, similar to mass. However, there is one difference between mass and charge. Mass of a body is always positive

whereas a charge can be either positive or negative. Proper signs have to

be used while adding the charges in a system. For example, the total charge of a system containing five charges +1, +2, –3, +4 and –5, in some arbitrary unit, is (+1) + (+2) + (–3) + (+4) + (–5) = –1 in the same unit.

Charge is conserved

We have already hinted to the fact that when bodies are charged by rubbing, there is transfer of electrons from one body to the other; no new charges are either created or destroyed. A picture of particles of electric charge enables us to understand the idea of conservation of charge. When we rub two bodies, what one body gains in charge the other body loses. Within an isolated system consisting of many charged bodies, due to interactions among the bodies, charges may get redistributed but it is found that the total charge of the isolated system is always conserved. Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated system although the charge carrying particles may be created or destroyed in a process. Sometimes nature creates charged particles: a neutron turns into a proton and an electron. The proton and electron thus created have equal and opposite charges and the total charge is zero before and after the creation.

Quantisation of charge

Experimentally it is established that all free charges are integral multiples of a basic unit of charge denoted by e. Thus charge q on a body is always given by

q = ne

where n is any integer, positive or negative. This basic unit of charge is the charge that an electron or proton carries. By convention, the charge on an electron is taken to be negative; therefore charge on an electron is written as –e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed as quantisation of charge. There are a large number of situations in physics where certain physical quantities are quantised. The quantisation of charge was first suggested by the experimental laws of electrolysis discovered by English experimentalist Faraday. It was experimentally demonstrated by Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a coulomb and is denoted by the symbol C. A coulomb is defined in terms the unit of the electric current which you are going to learn in a subsequent chapter. In terms of this definition, one coulomb is the charge flowing through a wire in 1 s if the current is 1 A (ampere),. In this system, the value of the basic unit of charge is

e = 1.602192 × 10–19 C

Thus, there are about 6 × 1018 electrons in a charge of –1C. In electrostatics, charges of this large magnitude are seldom encountered and hence we use smaller units 1 μC (micro coulomb) = 10–6 C or 1 mC (milli coulomb) = 10–3 C.

If the protons and electrons are the only basic charges in the universe, all the observable charges have to be integral multiples of e. Thus, if a body contains n1 electrons and n2 protons, the total amount of charge on the body is n2 × e + n1 × (–e) = (n2 – n1) e. Since n1 and n2 are integers, their difference is also an integer. Thus the charge on anybody is always an integral multiple of e and can be increased or decreased also in steps of e. The step size e is, however, very small because at the macroscopic level, we deal with charges of a few μC. At this scale the fact that charge of a body can increase or decrease in units of e is not visible. In this  respect, the grainy nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points and lines. A dotted line viewed from a distance appears continuous to us but is not continuous in reality. As many points very close to each other normally give an impression of a continuous line, many small charges taken together appear as a continuous charge distribution.

At the macroscopic level, one deals with charges that are enormous compared to the magnitude of charge e. Since e = 1.6 × 10–19 C, a charge of magnitude, say 1 μC, contains something like 1013 times the electronic charge. At this scale, the fact that charge can increase or decrease only in units of e is not very different from saying that charge can take continuous values. Thus, at the macroscopic level, the quantisation of charge has no practical consequence and can be ignored. However, at the microscopic level, where the charges involved are of the order of a few tens or hundreds of e, i.e., they can be counted, they appear in discrete lumps and quantisation of charge cannot be ignored. It is the magnitude of scale involved that is very important.

Leave a Comment

Your email address will not be published.

Share on facebook
Facebook
Share on whatsapp
WhatsApp
Share on twitter
Twitter
Share on linkedin
LinkedIn

Spread the word

sbi exam model questions
MCQS
neetadmin

SBI EXAM MODEL QUESTIONS

SBI EXAM MODEL QUESTIONS WITH ANSWERS SBI EXAMS MODEL QUESTIONS The SBI (State Bank of India) conducts various exams for recruitment into different roles, with

Read More »